$45^{\text {th }}$ National Chemistry Olympiad

Maastricht University

PRACTICAL TEST

Marking scheme

Thursday June 6, 2024

SCHEIKUNDE
OLYMPIADE
岗 Maastricht University

Experiment 1 The determination of the amount of crystal water (x) in a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ and NaHCO_{3}

Maximum score 10
The following practical skills are assessed:

- safety, working clean and independence
- handling of the glassware
Maximum score 8
mass of the sample and the molarity of the hydrochloric acid 1
- burette readings read in two decimals 2
difference between the two duplicates of the titrations 5
The score points for the differences between the two duplicates for each titration are determined as follows:5
If 0.10 mL < the difference in the used volume between the duplicates $\leq 0.20 \mathrm{~mL}$ 4
If 0.20 mL < the difference in the used volume between the duplicates $\leq 0.30 \mathrm{~mL}$ 3
If 0.30 mL < the difference in the used volume between the duplicates $\leq 0.50 \mathrm{~mL}$ 2
If 0.50 mL < the difference in the used volume between the duplicates $\leq 0.70 \mathrm{~mL}$ 1
If the difference in the used volume between the duplicates $>0.70 \mathrm{~mL}$ 0
The final score is the average of the scores for both titrations.
-2 Maximum score 4
Titration with phenolphtalein:
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
Titration with methyl orange:
$\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
correct reaction equation for the titration with phenolphtalein 1
- for the titration with methyl orange, correct reaction equation with the carbonate 2- for the titration with methyl orange, correct reaction equation with thehydrogen carbonate1

Remarks

- When H^{+}is used instead of $\mathrm{H}_{3} \mathrm{O}^{+}$, in an otherwise correct equation, accept this as correct.
- When for the titration with methyl orange the equations
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ are given, accept this as correct.
- When $\mathrm{H}_{2} \mathrm{CO}_{3}$ is written after the arrow in the equations for the titration with methyl orange, do not penalize this.

Maximum score 10
From the titration with phenolphthalein follows that $V_{1} \times 0.1000$ mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ were present in 25.00 mL of the solution from the volumetric flask, So $\frac{V_{1} \times 0.1000}{25.00} \times 250.00$ mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ were present in the sample.
$V_{2} \times 0.1000$ mmoles of $\mathrm{H}_{3} \mathrm{O}^{+}$reacted in the titration with methyl orange. Of this amount $2 \times V_{1} \times 0.1000$ mmoles reacted with $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, so the amount of mmoles of NaHCO_{3} in 25.00 mL of the solution of the sample from the volumetric flask was
$V_{2} \times 0.1000-2 \times V_{1} \times 0.1000$, so $\frac{V_{2} \times 0.1000-2 \times V_{1} \times 0.1000}{25.00} \times 250.00$ mmoles of NaHCO_{3}
were present in the sample.

- calculation of the amount of mmoles of $\mathrm{H}_{3} \mathrm{O}^{+}$that reacted in both titrations:
$V_{1} \times 0.1000$ and $V_{2} \times 0.1000$, respectively
- calculation of the amount of mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ in the 25.00 mL solution:. equals $V_{1} \times 0.1000$
- notion that in the titration with methyl orange $2 \times V_{1} \times 0.1000$ mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ reacted
. calculation of the amount of mmoles of NaHCO_{3} in the 25.00 mL solution
- conversion from the amount of mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ and NaHCO_{3} in the 25.00 mL solution to the amount of mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ and NaHCO_{3} in the sample: divide by 25.00 and multiply by 250.00
- results 5
-4 Maximum score 4
The amount of mg of $\mathrm{H}_{2} \mathrm{O}$ in the sample is
$m_{\text {sample }}-m_{\mathrm{Na}_{2} \mathrm{CO}_{3}}-m_{\mathrm{NaHCO}_{3}}=m_{\text {sample }}-$ mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \times 105.99-$ mmoles of $\mathrm{NaHCO}_{3} \times 84.007$ Thus, the amount of mmoles of $\mathrm{H}_{2} \mathrm{O}$ in the sample is:
$\frac{m_{\text {sample }}-\mathrm{mmol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times 105.99-\mathrm{mmol} \mathrm{NaHCO}_{3} \times 84.007}{18.015}$.
And $x=\frac{\text { amount of mmoles of } \mathrm{H}_{2} \mathrm{O}}{\text { amount of mmoles of } \mathrm{Na}_{2} \mathrm{CO}_{3}}$.
- calculation of the amount of mg of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the sample and of the amount of mg of
NaHCO_{3} in the sample
- calculation of the amount of mg of $\mathrm{H}_{2} \mathrm{O}$ in the sample 1
- calculation of the amount of mmoles of $\mathrm{H}_{2} \mathrm{O}$ in the sample 1
- calculation of $x \quad 1$

口5 Maximum score 4
An example of a correct answer is:
A solution of barium hydroxide can be used. Then $\mathrm{HCO}_{3}{ }^{-}$from the NaHCO_{3} as well as $\mathrm{CO}_{3}{ }^{2-}$ from the $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ will react to BaCO_{3}. In that case the titration with methyl orange does not have to be executed.

- use of a solution of barium hydroxide
. $\mathrm{CO}_{3}{ }^{2-}$ from $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ reacts to BaCO_{3}
. $\mathrm{HCO}_{3}{ }^{-}$from NaHCO_{3} reacts to BaCO_{3}
- conclusion

If an answer is given as: „A solution of barium chloride can be used. Then, $\mathrm{CO}_{3}{ }^{2-}$ from $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ reacts to BaCO_{3}. The titration with fenolftalein does not have to be executed."

Remark
When an answer is given as: „A solution of barium chloride can be used. Then, $\mathrm{CO}_{3}{ }^{2-}$ from $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{xH}_{2} \mathrm{O}$ reacts to BaCO_{3}. Because of that, the equilibrium of $\mathrm{HCO}_{3}{ }^{-}$will completely shift into the direction of $\mathrm{CO}_{3}{ }^{2-}$, that will be converted into BaCO_{3} thereafter. Thus, the titration with methyl orange does not have to be executed.", do not penalize this.

Experiment 2 Kinetic study of the decomposition of tris－（oxalato）－ manganese（III）ion

Maximum score 10

The following practical skills are assessed：
－safety，working clean and independence
－handling of the glassware
ロ6 Maximum score 2
－times noted in sec 1
－absorbances noted 1
口7 Maximum score 2
－calculation of ΔA and Δt in both variants 1
．calculation of s_{I} and $s_{\|} \quad 1$
ロ8 Maximum score 8
－calculation of $\log s_{1}$ and $\log s_{2} \quad 1$
－calculation of $\log \left[\left\{\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right\}^{3-}\right]_{1}$ and $\log \left[\left\{\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right\}^{3^{3-}}\right]_{11} \quad 1$
－calculation of $n \quad 1$
－result 5
－9 Maximum score 2
－answer in accordance with the calculated value of $n \quad 1$
－motivation 1
व10 Maximum score 3
－calculation of ΔA ，three times 1
－calculation of Δt ，three times 1
－calculation of s ，three times 1
व11 Maximum score 9
－calculation of the concentration of the complex at the start of each time interval 1
－calculation of the value of k ，four times 1
－calculation of the average $k \quad 1$
－correct dimension for $k \quad 1$
．result 5
－12 Maximum score 4
An example of a correct answer is：
$(4.0 \times 0.020=) 0.080$ mmoles of MnO_{4}^{-}and $(2.0 \times 0.20=) 0.40$ mmoles of Mn^{2+} and （ $14.0 \times 0.20=$ ） 28 mmoles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ are added together．
So the amount of MnO_{4}^{-}（is the limiting factor and）determines the amount of the complex ion that is formed．
So $5 \times 0.080=0.40 \mathrm{mmol}$ complex is formed in $(4.0+2.0+14.0=) 20.0 \mathrm{~mL}$ solution．
The concentration is $\frac{0.40}{20}=0.020 \mathrm{~mol} \mathrm{~L}^{-1}$ ．
－calculation of the amount of mmoles of $\mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
－conclusion that the amount of mmoles of MnO_{4}^{-}determines the amount of mmoles of
complex ion that is formed
－calculation of the amount of mmoles of complex ion that is formed 1
－calculation of the concentration of the complex ion at $t=0 \quad 1$

