45th National Chemistry Olympiad

Maastricht University

PRACTICAL TEST

Marking scheme

Thursday June 6, 2024

56THIChO International Chemistry Olympiad Saudi Arabia 2024

Maastricht University

Experiment 1 The determination of the amount of crystal water (x) in a mixture of Na₂CO₃.xH₂O and NaHCO₃

40 points

	Maximum score 10 The following practical skills are assessed: · safety, working clean and independence · handling of the glassware	
□1	Maximum score 8 • mass of the sample and the molarity of the hydrochloric acid • burette readings read in two decimals • difference between the two duplicates of the titrations	1 2 5
	The score points for the differences between the two duplicates for each titration are determined as follows: If the difference in the used volume between the duplicates ≤ 0.10 mL If 0.10 mL < the difference in the used volume between the duplicates ≤ 0.20 mL If 0.20 mL < the difference in the used volume between the duplicates ≤ 0.30 mL If 0.30 mL < the difference in the used volume between the duplicates ≤ 0.50 mL If 0.50 mL < the difference in the used volume between the duplicates ≤ 0.70 mL If 0.50 mL < the difference in the used volume between the duplicates ≤ 0.70 mL If the difference in the used volume between the duplicates ≤ 0.70 mL If the difference in the used volume between the duplicates ≥ 0.70 mL The final score is the average of the scores for both titrations.	5 4 3 2 1 0
□2	Maximum score 4 Titration with phenolphtalein: $CO_3^{2-} + H_3O^+ \rightarrow HCO_3^- + H_2O$ Titration with methyl orange: $CO_3^{2-} + 2 H_3O^+ \rightarrow CO_2 + 3 H_2O$ and $HCO_3^- + H_3O^+ \rightarrow CO_2 + 2 H_2O$	
	 correct reaction equation for the titration with phenolphtalein for the titration with methyl orange, correct reaction equation with the carbonate for the titration with methyl orange, correct reaction equation with the hydrogen carbonate 	1 2 1
	 Remarks When H⁺ is used instead of H₃O⁺, in an otherwise correct equation, accept this as correct. When for the titration with methyl orange the equations CO₃²⁻ + H₃O⁺ → HCO₃⁻ + H₂O and HCO₃⁻ + H₃O⁺ → CO₂ + 2 H₂O are given, accept this as correct. When H CO₂ is written after the arrow in the equations for the titration with methyl 	

When H_2CO_3 is written after the arrow in the equations for the titration with methyl orange, do not penalize this.

D3 Maximum score 10

From the titration with phenolphthalein follows that $V_1 \times 0.1000$ mmoles of Na₂CO₃.*x*H₂O were present in 25.00 mL of the solution from the volumetric flask,

So
$$\frac{V_1 \times 0.1000}{25.00} \times 250.00$$
 mmoles of Na₂CO₃.*x*H₂O were present in the sample.

 $V_2 \times 0.1000$ mmoles of H_3O^+ reacted in the titration with methyl orange. Of this amount $2 \times V_1 \times 0.1000$ mmoles reacted with Na₂CO₃.*x*H₂O, so the amount of mmoles of NaHCO₃ in 25.00 mL of the solution of the sample from the volumetric flask was

 $V_2 \times 0.1000 - 2 \times V_1 \times 0.1000$, so $\frac{V_2 \times 0.1000 - 2 \times V_1 \times 0.1000}{25.00} \times 250.00$ mmoles of NaHCO₃

were present in the sample.

- · calculation of the amount of mmoles of H_3O^+ that reacted in both titrations: $V_1 \times 0.1000$ and $V_2 \times 0.1000$, respectively
- · calculation of the amount of mmoles of Na₂CO₃. xH_2O in the 25.00 mL solution:. equals $V_1 \times 0.1000$
- \cdot notion that in the titration with methyl orange $2\times V_1\times 0.1000$ mmoles of Na_2CO_3.xH_2O reacted
- \cdot calculation of the amount of mmoles of NaHCO3 in the 25.00 mL solution
- conversion from the amount of mmoles of $Na_2CO_3.xH_2O$ and $NaHCO_3$ in the 25.00 mL solution to the amount of mmoles of $Na_2CO_3.xH_2O$ and $NaHCO_3$ in the sample: divide by 25.00 and multiply by 250.00

 \cdot results

□4 Maximum score 4

The amount of mg of H_2O in the sample is

 $m_{\text{sample}} - m_{\text{Na}_2\text{CO}_3} - m_{\text{NaHCO}_3} = m_{\text{sample}} - \text{mmoles of Na}_2\text{CO}_3 \times 105.99 - \text{mmoles of NaHCO}_3 \times 84.007$ Thus, the amount of mmoles of H₂O in the sample is:

 m_{sample} – mmol Na₂CO₃ × 105.99 – mmol NaHCO₃ × 84.007

And $x = \frac{\text{amount of mmoles of H}_2\text{O}}{\text{amount of mmoles of Na}_2\text{CO}_3}$.

- \cdot calculation of the amount of mg of Na_2CO_3 in the sample and of the amount of mg of $NaHCO_3$ in the sample
- \cdot calculation of the amount of mg of H₂O in the sample
- \cdot calculation of the amount of mmoles of H_2O in the sample
- \cdot calculation of x

1

1

1

1

1

5

1 1

1

1

D5 Maximum score 4

An example of a correct answer is:

A solution of barium hydroxide can be used. Then HCO_3^- from the NaHCO₃ as well as CO_3^{2-} from the Na₂CO₃.*x*H₂O will react to BaCO₃. In that case the titration with methyl orange does not have to be executed.

- \cdot use of a solution of barium hydroxide
- \cdot CO₃²⁻ from Na₂CO₃.xH₂O reacts to BaCO₃
- · HCO₃⁻ from NaHCO₃ reacts to BaCO₃
- \cdot conclusion

If an answer is given as: "A solution of barium chloride can be used. Then, CO_3^{2-} from $Na_2CO_3.xH_2O$ reacts to $BaCO_3$. The titration with fenolftalein does not have to be executed."

Remark

When an answer is given as: "A solution of barium chloride can be used. Then, CO_3^{2-} from $Na_2CO_3.xH_2O$ reacts to $BaCO_3$. Because of that, the equilibrium of HCO_3^- will completely shift into the direction of CO_3^{2-} , that will be converted into $BaCO_3$ thereafter. Thus, the titration with methyl orange does not have to be executed.", do not penalize this.

1

1

1

1

2

Expe	eriment 2 Kinetic study of the decomposition of tris-(oxalato)- manganese(III) ion	40 points
	Maximum score 10 The following practical skills are assessed: • safety, working clean and independence • handling of the glassware	
□6	Maximum score 2 • times noted in sec • absorbances noted	1 1
□7	Maximum score 2 \cdot calculation of ΔA and Δt in both variants \cdot calculation of s_1 and s_{11}	1 1
□8	Maximum score 8 · calculation of log s_1 and log s_2 · calculation of log [{Mn(C ₂ O ₄) ₃ } ³⁻] ₁ and log [{Mn(C ₂ O ₄) ₃ } ³⁻] ₁₁ · calculation of n · result	1 1 5
□9	Maximum score 2 · answer in accordance with the calculated value of <i>n</i> · motivation	1 1
□10	Maximum score 3 \cdot calculation of ΔA , three times \cdot calculation of Δt , three times \cdot calculation of <i>s</i> , three times	1 1 1
¤11	 Maximum score 9 calculation of the concentration of the complex at the start of each time interval calculation of the value of k, four times calculation of the average k correct dimension for k result 	1 1 1 5
□12	Maximum score 4 An example of a correct answer is: $(4.0 \times 0.020 =) 0.080$ mmoles of MnO ₄ ⁻ and $(2.0 \times 0.20 =) 0.40$ mmoles of Mn ²⁺ and $(14.0 \times 0.20 =) 28$ mmoles of H ₂ C ₂ O ₄ are added together. So the amount of MnO ₄ ⁻ (is the limiting factor and) determines the amount of the com- ion that is formed. So 5 × 0.080 = 0.40 mmol complex is formed in $(4.0 + 2.0 + 14.0 =) 20.0$ mL solution. The concentration is $\frac{0.40}{20} = 0.020$ mol L ⁻¹ .	ıplex
	 calculation of the amount of mmoles of MnO₄⁻, Mn²⁺ and H₂C₂O₄ conclusion that the amount of mmoles of MnO₄⁻ determines the amount of mmoles of complex ion that is formed calculation of the amount of mmoles of complex ion that is formed calculation of the concentration of the complex ion at t = 0 	1 1 1 1